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Using a one-dimensional model, we study conditions for the appearance of soli- 
tary waves in a thermo-elastic medium as a function of the nonlinear nature of 
heat conduction, temperature, and thermal expansion coefficient. Two conditions 
for the appearance of solitary waves are examined, one of which has a physical 
meaning and therefore confirms the fact of the existence of solitons in a 
thermo-elastic medium. Geometric characteristics of solitons, their speed, am- 
plitude, and width, are obtained. 

i. Statement of the Problem. The propagation of one-dimensional waves in a thermo- 
elastic medium in the absence of sources of heat generation and absorption may be described 
by the following system of equations [i, 2]: 
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Equation (2) is the equation of heat conduction for media, based on Fourier's law. 

Based on these equations, we consider the following problem. Find the form of the non- 
linear dependence 8 = e(o), a = a(o) for which equations (i), (2) admit a solution of soli- 
tary wave type. In order for the desired solution of equations (i), (2) to have the nature 
of a solitary wave, the stress o must satisfy the equation [3]: 
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The c o n d i t i o n  k 2 = c o n s t  i s  e q u i v a l e n t  t o  t h e  f o l l o w i n g  e q u a t i o n s :  
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where  k 2 and ~3 a r e  c o n s t a n t s ;  v i s  a s o l u t i o n  o f  e q u a t i o n  ( 5 ) .  S i n c e  e q u a t i o n s  ( 1 ) - ( 5 )  do 
not contain the variables x and t explicitly, they admit self-similar solutions for which 
equations (1)-(5) can be transformed as follows: 
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where  b ,  c ,  d ,  m, and n a r e  c o n s t a n t s  o f  i n t e g r a t i o n ,  and 
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Equations (6)-(10) constitute a complete set of equations describing the propagation of soli- 

tary waves in a thermo-elastic medium. 

2. Finding a Solution of Equation (9). 
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For c 2 = f2 = E/p it follows from equation (9) 
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We introduce a new independent function s by means of the equation 
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On the basis of equation (7) we have 

@ i d~ 
~; ( 4 y 3 - - g 2 Y - - g 3 )  '/2 p g ( ~ )  

where e 3 is the smallest real root of the equation 
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p is a constant which satisfies the equation y(p) = e 3. 
obtain 

i = q - - m T + % ,  
dy 
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Using relations (12) and (14), we 
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From relation (16) we have 

s=~(z+~3), 

where ~0 (z + ma) is the elliptic function of Weierstrass [4]; 

z = q - - m T .  

Using relation (13), we write relation (18) explicitly thus: 
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where sn(u, r) is the elliptic function of Jacobi [4], 
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From e q u a t i o n s  ( 6 )  and  ( 7 )  i t  f o l l o w s  t h a t  
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When 2v + c - 4k 2 < 0, the solution of equation (22) has the form 
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w h e r e  R 2 i s  a c o n s t a n t  o f  i n t e g r a t i o n ;  I3  i s  a W e i e r s t r a s s  e l l i p t i c  i n t e g r a l  o f  t h e  t h i r d  
kind [4] : 
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Taking relations (13) and (18) into account, we can put integral (24) in the following form: 

where 
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~(u), o(u), ~' (u) are Weierstrass elliptic functions [4]. If we take 
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where H~ = (e I - eE)(e I - ca) and ~ is the real half-period of the Weierstrass elliptic 
function. In this case it is necessary that e I > g 2 > ~s, since each identical pair ei, ej 
will yield k 2 - c/b = eE, ~'(~) = ~' (m) = 0, and relation (25) loses its meaning. In ad- 
dition, if we take p such that 
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then when r = q = m/2, we have 
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On t h e  b a s i s  o f  r e l a t i o n s  ( 2 3 ) ,  ( 20 ) ,  ( 27 ) ,  and (30)  we have  
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3. Finding a Solution of Equation (i0). From equation (i0) we have 

O = e ~r ~ n 1 c . t 'Tds + 2Zo 
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where  a = mc/K = mECe/9) .o,  and o i s  c a l c u l a t e d  f rom e x p r e s s i o n  (32 ) .  From r e l a t i o n s  (6)  
and (7)  i t  f o l l o w s  t h a t  

g =  2 v + c _ 4 k 2  [(2v3 +cvZ  + d v + b ) l / 2  +~,~l. (34)  

Introducing relations (23) and (30) into relation (34), we obtain 

When i s 

g =  4 R ~  [(2va-l-cvZ-t-dv-I-b)  1/2 -}-)~3]exp - - ~ a ~  - - r o T  . (35)  

> 0, we then have 

Then by relation (12), 

g = - - o o  f o r  0 = 0 ,  g < O V G .  (36)  

T~0VG for tn~>0. (37) 

Using relations (36) and (37), we find, from relations (I0) and (33), that 
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If 13 = 0, then from relations (13), 

g -- 

(23), and (35) we have 
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Substituting equation (40) into equation (39), we obtain 
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With the aid of relation (41) we find 

Then 

g = _ _ _  1 [(el - -  e2)(e2 - -  3) f o r  ~ = 0 .  e ,]l/~ ( 4 3 )  
R 

[ (V o2 
T - -  1 dT 1 F (r) - -  F ] [32 r ( 4 4 )  

m R  ~ [ ( / z + ~ z ) ( [ 3 2 - - ~ z ) ] 1 / 2  m ( e l - - e 3 ) W 2  . - - - - '  ' 

where F(r) and F(u, r) are the complete and incomplete Legendre elliptic integrals of the 
first kind, respectively. 

It follows from equation (44) that 

c5 = ( e ~ -  e3 / /2  
R cn [(el -- e~)l/2(~o -- roT), r]. ( 4 5 )  

The solution (45) cannot arise from solution (32) since, according to relations (40) and 
(42), we have 

k2 - c e e 2 ( e ~ - - e s ) I / 2  + es(e  1 -  e2)I/2 
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U s i n g  r e l a t i o n  ( 1 2 )  we c a n  r e w r i t e  e x p r e s s i o n  ( 3 3 ) :  

1 
exp(aT)  i T e x p ( - - a T ) d v - ~  Td~:-[- 9K q- q- ( 4 6 )  o =  a - 7 -  ' 

where C E is heat capacity under constant deformation, n = 0. 

Since T = aO, we then obtain the following expression for the coefficient of thermal 
expansion a: 

From equation (47) we find that e + 0 as a = m(ECEI@I0) + 0. 

The quantity T in relations (46) and (47) is given by the expression (12) when 13 > 0 
and by expression (44) when 13 = 0. 

4. Condition of Existence and Nature of Solitary Waves. From relations (12) and (36) 
it follows that 

d~ 
dT --  m g > O  V y .  ( 4 8 )  

Using relation (48) we can establish that ~ attains a maximum value when mT = w/2; from re- 
lation (32) we then find 
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When Xs 

For the cases Xs > 0 and X s 

m 
0 ~ T < - - ,  0 < T < - -  

2m m 

It follows from relations (8) and (ii) that o is a solution of the following equation: 
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= 0, the quantity o varies between the following limits: 

I e 0 < f < --~-- (2 - -  %),/2. (50) 

= 0 the quantity T lies in the following intervals, respectively: 
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It follows from this that 
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= f (g), w~reg = x--c t .  

R e l a t i o n s  ( 8 ) ,  ( 11 ) ,  ( 12 ) ,  and (53)  y i e l d  
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so t h a t  r e l a t i o n s  (32)  and (45) can be r e w r i t t e n  as  
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Assume now t h a t  t h e  s o u r c e  g e n e r a t i n g  t h e  s o l i t a r y  wave i s  l o c a t e d  a t  t h e  c o o r d i n a t e  o r i g i n  
(X = 0). From relations (8), (36), (43), (55), and (56) we have: 

Off 
i f  % 3 > 0 ,  t h e n f  = 0,  - -  = -'}- OO f o r  X - -  0,  t = 0,  

at 

[(e 1 - -  e~)(%-- e~)]l/2 f o r  X = 0 ,  t = O. if~ %3 ---- 0,thenf -- 0, 

(57) 

(58) 0f c 
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Only the initial condition (58) has an obvious physical meaning. 

Thus, based on the above, we can conclude that the solitary waves (56), subject to the 
initial condition (58), can exist in a thermo-elastic medium if 8 = 8(o), ~ = a(o) have the 
forms (46) and (47). These waves propagate along the positive direction of the x-axis with 
speed c = 4k 2. Their amplitude is given by 

M =  ! (e~-e3) '/2 ( 5 9 1  
R 

The width L of the solitary waves is given by the expression 

L=2F(r) .  (60) 
A search of the literature shows that the conditions given for the appearance of solitary 
waves (56) are new. 

NOTATION 

T = ~8; f2 = E/p, K = I/3(3X + 2D); o, stress; 8, temperature; ~, coefficient of 
thermal expansion; K, E, X, ~, elastic constants; K, k0, Co, thermal constants; p, density 
of the medium. 
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QUASISTATIC THERMOVISCOELASTIC FIELDS IN AN 

INFINITE BICOMPOSITE CYLINDRICALLY 

ISOTROPIC PLATE 

M. P. Lenyuk and G. Ya. Stopen' UDC 539.32:536.244 

With the most general assumptions (within the framework of classical thermo- 
mechanics) nonsteady temperature fields and thermoviscoelastic fields of dis- 
placements and stresses induced by them are constructed in an infinite bicompon- 
ent cylindrically isotropic plate. Examples of Blot-Maxwell, Blot-Kelvin, and 
Maxwell-Kelvin plates are presented. 

i. Nonsteady Temperature Fields. The problem of the structure of a nonsteady tempera- 
ture field in an infinite bicomponent cylindrically isotropic (c. is.) plate leads mathemat- 
ically to the construction of the solution of a separate system of B-parabolic equations 
bounded in the domain D = {(t, r); t -> 0, r e I~ = 0), R)U(R, ~)} [i] 

l O T ' 2 (  Oz l O ) 
2 + •  J-- - - + - -  T j= f s ( t ,  r), 1 = 1 , 2 ,  (1) 

a i Ot Or z r Or i 
with the initial conditions 

Tllz=o=gz(r), r~(O, R), T~[t=o=gi(r), r6(R, oo), (2 )  

and t h e  c o n d i t i o n s  o f  n o n i d e a l  t h e r m a l  c o n t a c t  [2] 

, - 2 i - -  + 1 = o, o r ,  
r=R Or - ~ - r  )I~=R = 0. (3 )  

The solution of problem (1)-(3) can be constructed by the method of integral Fourier- 
Bessel transformation on the polar axis with one conjugate point [3]. We omit the mathemat- 
ical operations and find that the nonsteady temperature field in the plate under considera- 

2 2  22>0) tion is described by the functions (on the assumption that k~2 ~--a2K 2 - aiK 1 _ 

I R I 
i Hj~ (t, r, #) g~ (p) pdp + 

0 R 

0 0 R 

/ = 1 ,  2. 

I n  f o r m u l a s  (4 )  we i n t r o d u c e d  i n t o  c o n s i d e r a t i o n  t h e  i n f l u e n c e  f u n c t i o n s  

(4) 

h'11 (t, r, p) 
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